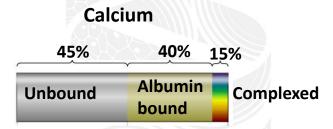

Summary

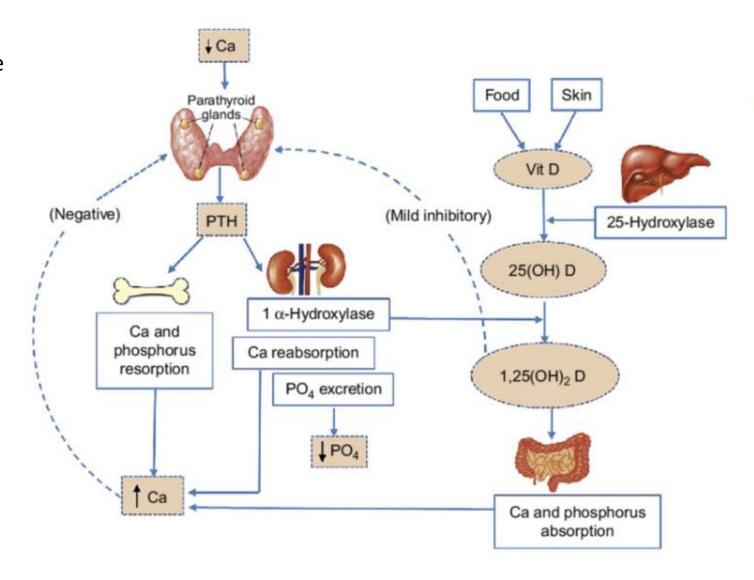
- Parathyroid hormone (PTH)
 - Synthesis, metabolism and regulation
- Primary Hyperparathyroidism (PHPT) NG132
- Surgery for PHPT
 - Imaging
 - Biochemistry ioPTH
 - Near Patient Testing (NPT)
 - Point of Care Testing (POCT)

PTH synthesis & metabolism

- Peptide hormone encoded by gene on short arm of chromosome 11
- Synthesised in the chief cells of the parathyroid glands



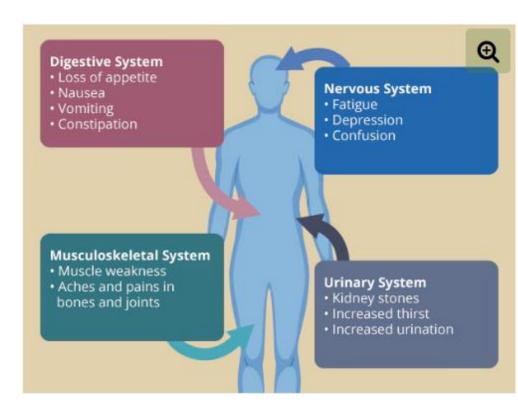
- Metabolised mainly in the liver and kidney into biologically active N-terminal fragment (1-36 aa) and inactive C-terminal fragment (37-84 aa), but also mid-fragments
- Intact PTH and N-terminal PTH— short half-life ~5 min
- Inactive C-terminal fragment half-life ~30-40 min
- Non-(1-84) or long C-terminal fragment increased in CKD –
 long half-life



PTH regulation

 Hypocalcaemia triggers PTH secretion from the parathyroid glands

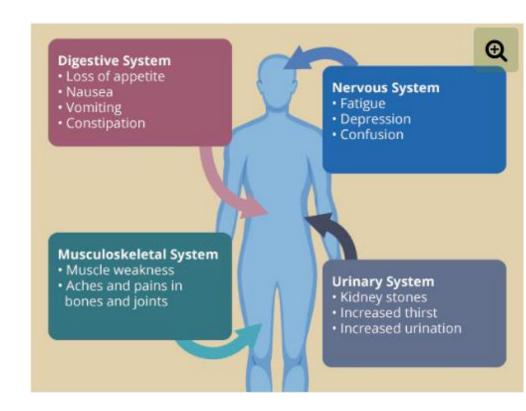
- Direct effect on kidneys and bones, indirect effect in the gut.
- Increased Ca⁺² Negative feedback to parathyroid glands



Hyperparathyroidism

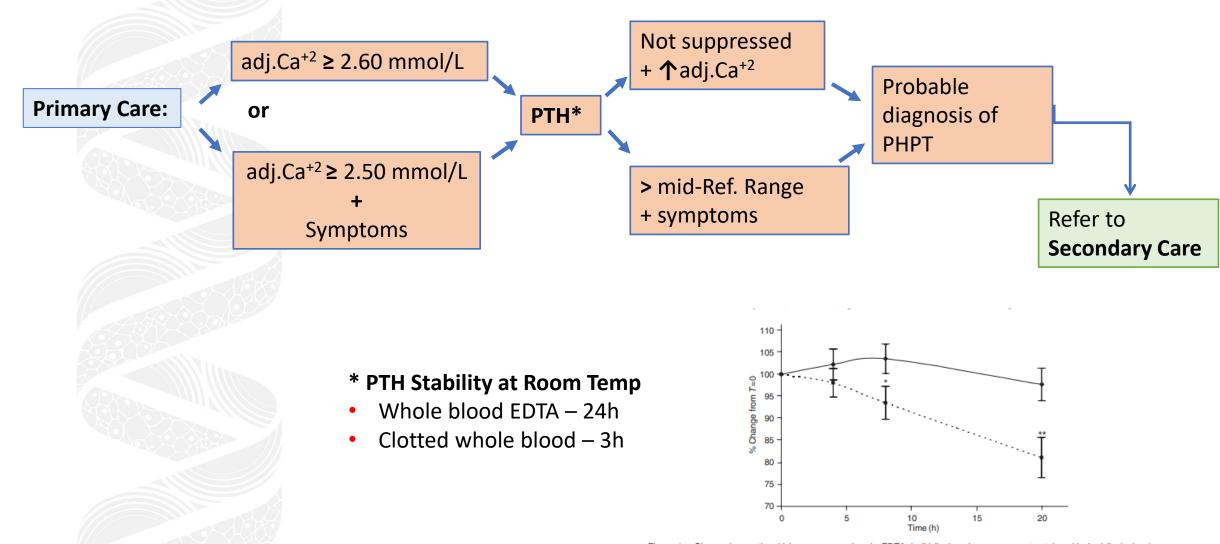
Primary HPT

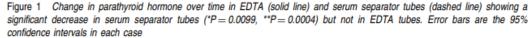
- Disorder of the parathyroid glands
- Classic PHPT: "Stones, bones, groans and psychiatric overtones"
- Asymptomatic PHPT: no classical symptoms, weakness, high fatigability. Loss of cortical bone and/or lower BMD common finding
- Women more commonly affected than men (3:1) –
 predominantly post-menopause
- Increasing prevalence, 3rd most common endocrine disorder after diabetes and thyroid diseases
- Cure: parathyroidectomy doubled in NHS between 2000 and
 2010


Hyperparathyroidism

Secondary HPT

- Physiological response of the parathyroid glands to underlying causes of hypocalcaemia
- VitD deficiency, malabsorption, low Ca intake, CKD


Tertiary HPT


- Prolonged untreated secondary HPT in advanced CKD
- Autonomous PTH hyper-secretion
- Can lead to kidney allograft rejection

NG132 (May 2019) – PHPT diagnosis & management

NG132 (May 2019) – PHPT diagnosis & management

Secondary Care:

- Measure VitD, & supplement if needed
- Exclude drug induce PHPT (thiazides, lithium)
- Assess renal function
- Familial Hypocalciuric Hypercalcaemia (FHH) –
 Calcium/Creatinine excretion ratio <0.01 on normal Ca⁺² diet
- DXA of lumbar spine, distal radius and hip

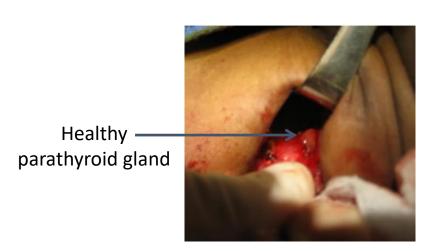
- Mutation in CASR gene
- Patients asymptomatic
- Do NOT benefit from parathyroidectomy

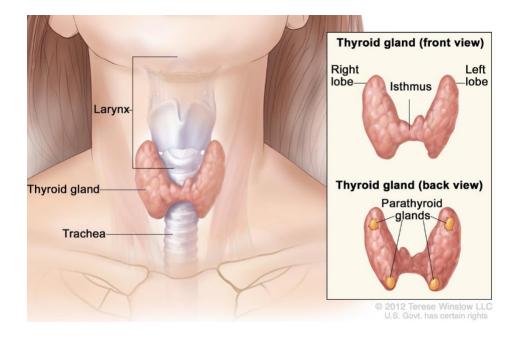
Referral for surgery

Preoperative Imaging - and/or Scintigraphy

Bilateral Neck Exploration (BNE)

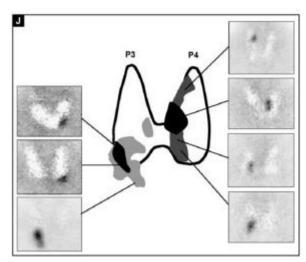
OR


Minimal Invasive Parathyroidectomy (MIP)



Parathyroid Glands

- Pea-size glands vast majority of people have 4
- Located posteriorly to the thyroid
- PHPT
 - Single adenoma 85%
 - Multiple gland disease (MGD) and hyperplasia 15-20%
 - Carcinoma ~1%
 - Majority of cases sporadic
- Hereditary syndromes like MEN1 & MEN2A associated with MGD and/or hyperplasia


Enlarged parathyroid gland

Imaging

- Purpose: localisation of hypersecreting glands entopic/ectopic
- Ultrasound (US)
 - Structural features, no radiation, high resolution, relatively cheap
 - Lymph nodes also small and echogenic
- Scintigraphy
 - Single-photon scintigraphy with 99mTc-Sestamibi, or dual tracer
 99mTc-pertechnetate and 99mTc-sestamibi
 - Uptake related to number & activity of mitochondria in oxyphil parathyroid cells. No uptake from the chief cells.
 - Concordant US and MIBI identify accurately 95% of single adenomas
 - Only 52 -64% of US & MIBI are concordant

Morris MA et al. Parathyroid Imaging: Past, Present and Future

Role of ioPTH

- MIP favoured surgical approach over BNE
 - Similar cure rate to BNE for sporadic single gland disease
 - Smaller incision
 - Shorter operation time
- Bilateral internal jugular venous sampling— alternative for lateralisation of affected gland
- PTH has a short half-life (~5min) → criteria developed based on % drop post excision of the affected gland(s)

Role of ioPTH

Criterion			Cure
Hale	PTH falls to lower end of Ref.Range by 15 min post-excision		
Rome	PTH ≥ 50% fall of pre-excision value	PTH within Ref.Range 20 min post- excision or PTH 0.8 pmol/L lower than PTH at 10 min post-excision	Adjusted Calcium within reference range for at least
Vienna	PTH ≥ 50% fall from pre-incision value at 10 min post-excision		6 months post-surgery
Miami	PTH ≥ 50% fall from pre-incision or pre- excision value (whichever is the highest) at 10 min post-excision		

- Miami criterion developed and optimised in the 1990s
 - Highest overall accuracy (93 97%) Most widely used

UCLH – imaging, ioPTH & Miami Criterion since 2006

- Ultrasound and single tracer dual phase Tc-99 m MIBI SPECT/CT
 - Concordant: both agree on lateralisation of adenoma
 - **Discordant type 1**: adenoma identified only in 1 scan
 - **Discordant type 2**: US and MIBI contradicting each other
 - **Negative**: no adenoma identified on scan
- STAT-IntraOperative-Intact-PTH Immunoassay Kit (STAT-IO-I-PTH)

TABLE 4 Cure rates and IOPTH monitoring added value

		Cure rate (N, %)			
Subgroup	N	ІОРТН	No IOPTH	IOPTH add value	Sig
Overall	617	603 (97.7%)	517 (83.7%)	86 (14%)	P < 0.05
Concordant	393 (63.7%)	385 (98%)	339 (86.3%)	46 (11.7%)	P < 0.05
Discordant (type 1)	136 (22%)	134 (98.5%)	119 (87.5%)	15 (11%)	P < 0.05
Discordant (type 2)	42 (6.8%)	41 (97.6%)	27 (64.3%)	14 (33%)	P < 0.05
Negative	46 (7.5%)	43 (93.5%)	32 (69.5%)	11 (24%)	P < 0.05

Surgeries for PHPT 2006 – 2016

Shawky M. *et al*. Impact of intraoperative parathyroid hormone monitoring on the management of patients with primary hyperparathyroidism

UCLH – imaging, ioPTH & Miami Criterion

TABLE 2 Performance of imaging and IOPTH monitoring

US			MIBI			IOPTH			
Measure	SGD	MGD	Overall	SGD	MGD	Overall	SGD	MGD	Overall
Accuracy	89	60.8	84.9	86.6	52.8	81.5	98.7	89	97.2

IOPTH, intraoperative parathyroid hormone; MGD, multi gland disease; MIBI, methoxy iso butyl isonitrile; SGD, single gland disease; US, ultrasound.

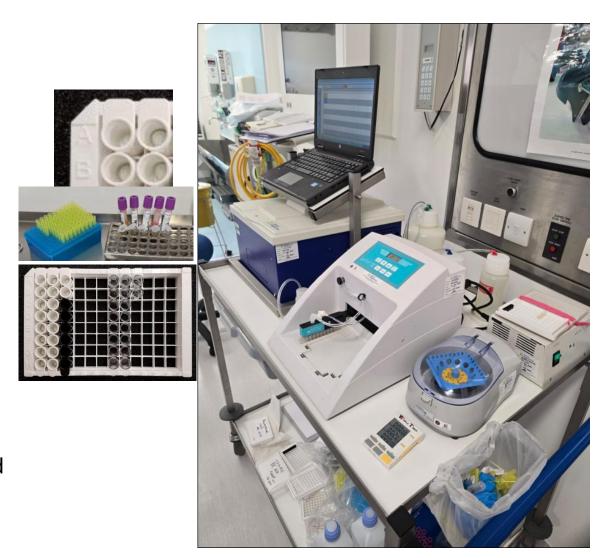
TABLE 4 Cure rates and IOPTH monitoring added value

		Cure rate (N, %)	Cure rate (N, %)					
Subgroup	N	IOPTH		No IOPTH		IOPTH add value	Sig	
Overall	617	603 (97.7%)		517 (83.7%)		86 (14%)	P < 0.05	
Started as MIP	477 (77.3%)	468 (98.1%)		416 (87.2%)		52 (11%)	P < 0.05	
Started as BNE	130 (21%)	126 (96.9%)	P > 0.05	94 (72.3%)	P < 0.05	32 (24.6%)	P < 0.05	
TA	10 (0.7%)	9		7		2 (20%)	P > 0.05	
Initial	571 (92.5%)	559 (97.9%)		488 (85.5)		71 (12.4%)	P < 0.05	
Reoperative	46 (7.5%)	44 (95.7%)	P > 0.05	29 (63)	P < 0.05	15 (32.6%)	P < 0.05	

BNE, bilateral neck exploration; IOPTH, intraoperative parathyroid hormone; MIP, minimally invasive parathyroidectomy; TA, thoracic approach.

Shawky M. et al. Impact of intraoperative parathyroid hormone monitoring on the management of patients with primary hyperparathyroidism

Surgeries for PHPT 2006 – 2016


- Limitations of imaging
- Added value of ioPTH
- Possibility to minimise preoperative scans

UCLH - Near Patient Testing (STAT-IO-I-PTH) I future diagnostics

- Chemiluminescent immunometric assay intact PTH in EDTA plasma
- 2 goat polyclonal antibodies
- C-terminal anti-PTH on coated on well-surface
- N-terminal anti-PTH labelled with isoluminol & lyophylised in the form of accusphere
- Incubation for 5 min followed by wash of excess/unbound antibody
- Addition of NaOH and H₂O₂ generates light signal proportional to the concentration of PTH in sample.
- Samples always analysed in duplicate mean & %CV reported
- Total TAT ~10 min

UCLH − Point Of Care Testing ☐☐☐

- Chemiluminescent immunometric assay intact PTH in whole blood EDTA
- 2 goat polyclonal antibodies
- One Ab coated on paramagnetic particles
- One Ab conjugated to with ALP
- Cartridge based
- Incubation is followed by a wash step
- Addition of ALP substrate generates light signal proportional to the concentration of PTH in sample.
- Single measurements
- Total TAT ~5 min

Precision

	Manuf	acturer's data	(NBCL)
NBCL quality controls	n	Concentration (pmol/L)	% CV
Intra-assay variability	33	6.3	8.5
mad assay randsmry	31	30.9	6.2
Inter-assay variability	33	6.3	11.6
inter-assay variability	31	30.9	10.0
	UC	CLH's data (NB	CL)
NBCL quality controls	n	Concentration (pmol/L)	% CV
Into r accou variability	12	5.6	14.3
Inter-assay variability	12	30.6	15.0
	U	CLH's data (NB	CL)
BioRad quality controls	n	Concentration (pmol/L)	% CV
	25	5.8	14.4
Inter-assay variability	25	39.9	5.1
	25	131.8	5.1

Comparison of NBCL, FD and Roche

PTH	Roche Elecsys	future diagnostics	nbcL
Immunoassay	2 nd generation/intact PTH	2 nd generation/intact PTH	2 nd generation/intact PTH
Cross reactivity with long C-fragment (7-84)	99%	Not stated, however N-terminal Ab targets PTH from position 7 onwards	Not stated, however N-terminal Ab targets PTH from position 7 onwards
Sample Type	Plasma EDTA	Plasma EDTA	Whole Blood EDTA
Antibodies	Mouse monoclonal (biotinylated/ruthenium complex)	Goat polyclonal (isoluminol oxidised in presence of H ₂ O ₂ in NaOH)	Goat polyclonal (ALP plus substrate)
Antibodies Traceability	(biotinylated/ruthenium	(isoluminol oxidised in	• •

Comparison of Roche, FD, NBCL

UK NEQAS for PTH, ACTH and hCT

Distribution: 204 Date: 05-Nov-2024

UK NEQAS [Edinburgh] Analyte : PTH (pmol/L)

					,					$\overline{}$
	P798					P799			P800	
	n	Mean	GCV	Outl.	Mean	GCV	Outl.	Mean	GCV	Out
All methods	310	63.9	26.5	2	184.5	22.9	2	4.7	21.4	4
PTH Methods 1	285	64.4	25.5	1	185.8	21.8	2	4.7	20.1	4
Abbott Alinity	48	78.9	8.6	0	222.5	6.3	0	6.5	6.6	0
Abbott Architect	16	79.8	6.8	0	225.6	4.6	0	6.8	5.0	0
Beckman Access	32	66.8	9.9	1	197.5	6.7	1	4.4	6.4	1
1 or 2	5	67.3	9.7	0	192.1	10.0	0	4.4	7.0	0
DxI	27	66.7	9.8	1	198.4	6.7	1	4.4	6.8	1
OCD (J&J) VITROS	2	89.8		0	258.7		0	6.0		0
Roche Elecsys	142	54.1	7.1	0	161.2	4.1	1	4.3	4.1	3
1010, 2010, e411	4	56.1		0	167.7		0	4.4		0
Cobas PURE e402	4	54.0		0	164.0		0	4.3		0
E170, e601, e602, e801	129	54.1	7.1	0	160.8	4.1	1	4.3	4.2	3
Siemens A Centaur	6	77.3	2.2	0	227.9		0	4.2	6.7	0
Siemens Atellica	38	81.8	7.4	0	254.6	5.5	0	4.5	4.8	0
Tosoh AIA	1	72.7		0	211.5		0	4.1		0
PTH Methods 2	17	45.3	14.5	1	130.4	10.5	0	3.4	24.2	0
DS Liaison 1-84 PTH	5	46.3	26.0	0	144.2	9.4	0	2.6	5.5	0
Fujirebio Lumipulse	1	41.7		0	114.6		0	2.5		0
G1200	1	41.7		0	114.6		0	2.5		0
Roche Elecsys (Bio)	11	45.0	13.0	1	125.7	5.1	0	3.8	5.6	0
E170, e601, e602, e801	10	44.5	12.8	1	124.7	4.2	0	3.8	4.5	0
PTH STAT Methods	8	115.1	80.6	0	347.7	84.1	0	8.5	45.1	0
Future Diag STAT	5	159.8	18.2	0	467.6	35.6	0	10.6	4.8	0
NBCL CONNECT	3	69.5		0	204.7		0	6.7		0

UK NEQAS for PTH, ACTH and hCT

Distribution: 204 Date: 05-Nov-2024

burgh] | Analyte : PTH (pmol/L)

Spec. Pool Pool description

PTH STAT Methods

Future Diag STAT

P798 UP069 Purified PTH (1-84) in EDTA plasma. P799 UP079 Purified PTH (1-84) in EDTA plasma.

P800 UP082 Base pool of EDTA plasma.

All methods

□ PTH STAT Methods
 □ Future Diag STAT

1.3 2.7 4.1 5.5 6.9 8.3

Specimen : P798	n	Mean	GCV	Outl.	120 ¬
All methods	310	63.9	26.5	2	90 - 00 - 00 - 00 - 00 - 00 - 00 - 00 -
PTH Methods 1	285	64.4	25.5	1	ya di
Abbott Alinity	48	78.9	8.6	0	60 →
Beckman Access	32	66.8	9.9	1	₩ 40 -
Roche Elecsys	142	54.1	7.1	0	9 20 -
Siemens Atellica	38	81.8	7.4	0	
PTH Methods 2	17	45.3	14.5	1	°→ □
PTH STAT Methods	8	115.1	80.6	0	15 35 55 75 95 115
Future Diag STAT	5	159.8	18.2	0	PTH (pmol/L)
Specimen : P799	n	Mean	GCV	Outl.	140 ¬ —
All methods	290	184.5	22.9	2	\$\frac{120}{100} - \frac{100}{100} - \frac{100}{
PTH Methods 1	266	185.8	21.8	2	80 -
Abbott Alinity	48	222.5	6.3	0	g 60 -
Beckman Access	32	197.5	6.7	1	₹ % 7
Roche Elecsys	142	161.2	4.1	1	6 40 - H L
Siemens Atellica	21	254.6	5.5	0	2 20 →
PTH Methods 2	16	130.4	10.5	0	○→ □┌┼╒╡┼╞╪╡╞┑ ┐ ═
PTH STAT Methods	8	347.7	84.1	0	30 90 150 210 270 330
Future Diag STAT	5	467.6	35.6	0	PTH (pmol/L)
Specimen : P800	n	Mean	GCV	Outl.	200 ¬
All methods	310	4.7	21.4	4	150 – 150 –
PTH Methods 1	285	4.7	20.1	4	ž j
Abbott Alinity	48	6.5	6.6	ō	₫ 100 -
Beckman Access	32	4.4	6.4	1	
Roche Elecsys	142	4.3	4.1	3	5 50 -
Siemens Atellica	38	4.5	4.8	ŏ	8
PTH Methods 2	17	3.4	24.2	0	○┘─┌ ┌┑┥╎╏ ┌╄╃┱┑ ╧

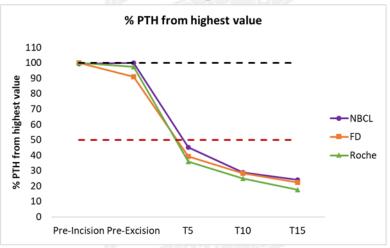
8.5

5 10.6

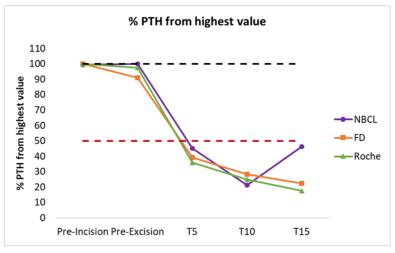
45.1 0

Comparison of NBCL, FD and Roche – % PTH drop & Precision

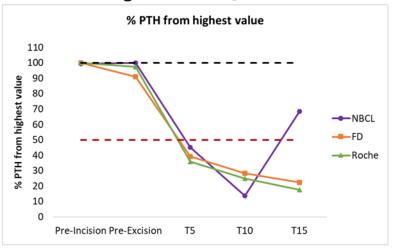
- Left over blood and plasma from patient samples collected during parathyroidectomies were analysed in duplicate on the Roche and NBCL platforms.
- Phase I (May-Nov 2021), Phase II (Jan-Mar 2022) Improvements in clot detection and interference from heterophilic antibodies
- Phase III (Apr-Jul 2022): 13 patients, 72 samples measured in duplicate, interested in % CV ≤15%.
- Measurements in whole blood for NBCL, plasma for FD and Roche


	NBCL	FD	Roche
CV≤15% N, (%)	52, (72%)	71, (99%)	72, (100%)
CV>15% N (%)	20, (28%)	1, (1%)	0
Total No. of samples	72	72	72

- NBCL not as precise as FD and Roche when using whole blood
- However, the high % CVs would not have changed the conclusion of the surgery in 12 out 13 patients.
- For the only patient with contradicting results, measurement of extra time point would have helped to avoid further neck exploration

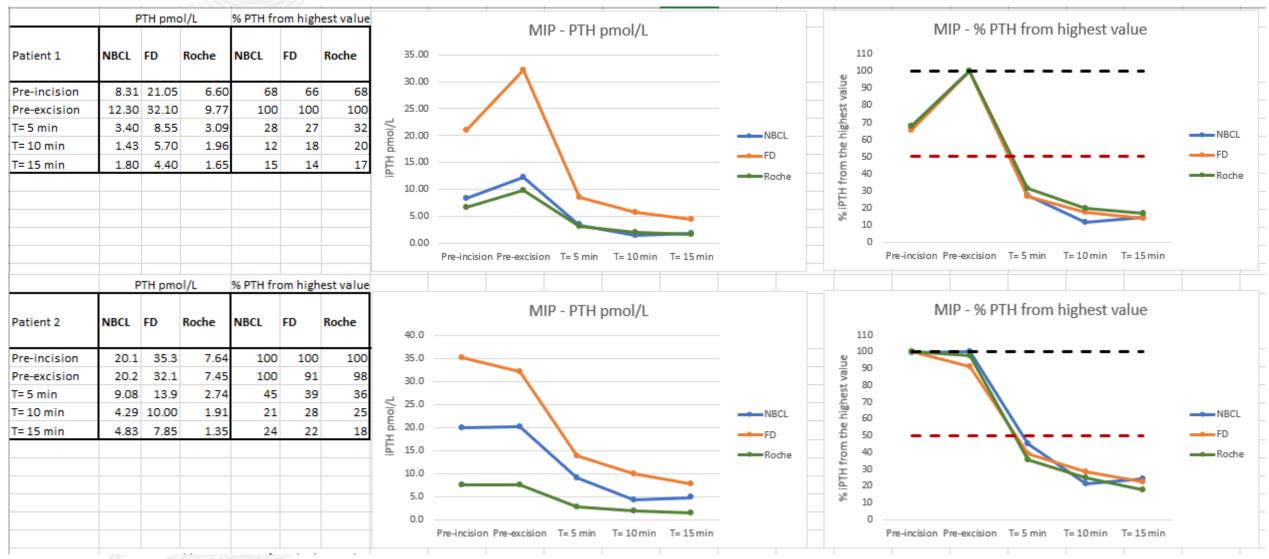


Comparison of NBCL, FD and Roche - % PTH drop & Precision


Highest value @T10 Lowest value @T15

Mean values @ T10 and T15

Lowest value @ T10 Highest value @T15



	PT	H pmol	/L	% PTH f	rom high	est value
	NBCL	FD	Roche	NBCL	FD	Roche
Pre-incision	20.5	34.5	7.68	100	100	100
Pre-incision	19.6	36.1	7.59	100	100	100
Pre-excision	21.5	30.8	7.44	100	91	98
FTE-EXCISION	18.8	33.4	7.46	100	91	30
T= 5 min	9.3	13.2	2.77	45	39	36
1-311111	8.89	14.6	2.70	43	39	30
T= 10 min		9.3	1.87	29	28	25
1- 10 11111	5.82	10.70	1.94	23	20	23
T= 15 min		7.60	1.37	24	22	18
1- 13 11111	4.83	8.1	1.33	24	22	10

	P.	TH pmol	/L	% PTH f	rom high	est value
	NBCL	FD	Roche	NBCL	FD	Roche
Pre-incision	20.5	34.5	7.68	100	100	100
Pre-incision	19.6	36.1	7.59	100	100	100
Pre-excision	21.5	30.8	7.44	100	91	98
PTE-EXCISION	18.8	33.4	7.46	100	91	36
T= 5 min	9.3	13.2	2.77	45	39	36
1-311111	8.89	14.6	2.70	43	39	30
T= 10 min	2.76	9.3	1.87	21	28	25
1- 10 11111	5.82	10.70	1.94	21	20	23
T- 15 min	13.8	8 7.60 1.37 46	22	18		
T= 15 min	4.83	8.1	1.33	40	22	10

	P.	TH pmol	/L	% PTH fr	om high	est value
	NBCL	FD	Roche	NBCL	FD	Roche
Pre-incision	20.5	34.5	7.68	100	100	100
PTE-IIICISIOII	19.6	36.1	7.59	100	100	100
Pre-excision	21.5	30.8	7.44	100	91	98
FTE-EXCISION	18.8	33.4	7.46	100	91	90
T= 5 min	9.3	13.2	2.77	45	39	36
1-311111	8.89	14.6	2.70	43	33	30
T= 10 min	2.76	9.3	1.87	14	28	25
1- 10 111111		10.70	1.94	14	20	23
T= 15 min	13.8	7.60	1.37	68	22	18
1- 13 mm		8.1	1.33	08	22	10

Comparison of NBCL, FD and Roche - % PTH drop

Comparison of NBCL, FD and Roche - % PTH drop

	Р	PTH pmo	ol/L	% PTH fr	rom hig	hest value	<u>e</u>								
Patient 3	NBCL	FD	Roche	NBCL	FD	Roche	60.00	BNE - PTH pmol/L		110		BNE - % F	PTH from h	nighest value	
Pre-Incision	27.05	37.95	12.95	5 100	0 75	5 85	50.00			a 80	2~				
Pre-Excision	22.15	44.50	13.95	5 82	2 88	8 92	40.00			<u>R</u> 80		✓		1	
T5	19.65	45.40	13.65	5 73	3 89	9 90		\		- ts 70					
2nd Exc. T5	22.45	50.85	13.5	5 83	3 100	0 89	₹ 30.00		→ NBCL	ー 売 60				_ 🕽	→ NBCL
2nd Exc. T10	20.45	42.00	12.35	5 76	6 83	3 82	E 20.00		→ FD	를 40					── FD
2nd Exc. T15	24.80	45.35	13.6	6 92	2 89	9 90	Ē		Roche	E 30					Roche
3rd Exc. TO	22.30	46.95	15.15	5 82	2 92	2 100	10.00		- nodie	을 20 는 10					
3rd Exc. T5	4.85	10.80	4.15	5 18	8 21	1 27	0.00			Ē 0					
3rd Exc. T10	4.89	9.50	3.02	2 18	8 19	9 20	j i	· · · · · · · · · · · · · · · · · · ·		%	wiper wiper	4 4	to 45 1	0 15 10 15	
3rd Exc. T15	5.34	8.00	2.845	5 20	0 16	5 19	, wex	sen and the to the transfer to the transfer the transfer transfer the transfer trans		26	liki bion Excibion	Index and Ex	K. Jeke Jadeke.	3rd Exc. dex. rd Exc.	
							6,	de porte de a a de de		4.	6,-	, D.	Jr	3, 3,	

Conclusions & further work

	FD	NBCL				
Comparability to laboratory method	Positively bias compared to Roche	Positively bias compared to Roche (company aims to align its method to Roche)				
Precision	As precise as the Roche assay	NOT as precise as the Roche assay, but of limited impact				
Cure Rate	Comparable to laboratory assay	Comparable to laboratory assay, but currently limited data				
Grade of operator	Laboratory staff	Clinical staff				
Pre-analytical considerations	Manual pipetting	Avoid samples collected directly from the drip arm				
Surgery planning	Not flexible – 2x per month	Flexible				
Cost per patient	£400 (reagents plus staff time)	£440 - Expectation to improve the overall pathway by being able to plan operations more flexibly.				

NBCL

- Finalise the product, define the LLOQ, minimise variability among cartridge lot numbers
- Apply for FDA and IVDR approval in 2025

Thank you!
Any Questions?